The Compound Interest Model

If a principal \(P \) is invested for \(t \) years at an annual rate \(r \) compounded \(n \) times per year, then the amount \(A \), or ending balance, is given by

\[
A = P \left(1 + \frac{r}{n} \right)^{nt}
\]

The principal \(P \) is also called the present value, and the amount \(A \) is called the future value.

Example 1 Find the future value of $10,000 at 8\% \text{ compounded quarterly for five years.}$

Example 2 Repeat Example 4 for $10,000 at 8\% \text{ but change the frequency of compounding to annually, semi-annually, monthly, daily, and hourly. Compare the future values.}$

<table>
<thead>
<tr>
<th>Frequency of Compounding</th>
<th>(n = ?)</th>
<th>Future value in five years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually</td>
<td>$10,000 \left(1 + \frac{0.08}{1} \right)^{1(5)} $</td>
<td></td>
</tr>
<tr>
<td>Semi-annually</td>
<td>$10,000 \left(1 + \frac{0.08}{2} \right)^{2(5)} $</td>
<td></td>
</tr>
<tr>
<td>Quarterly</td>
<td>$10,000 \left(1 + \frac{0.08}{4} \right)^{4(5)} $</td>
<td></td>
</tr>
<tr>
<td>Monthly</td>
<td>$10,000 \left(1 + \frac{0.08}{12} \right)^{12(5)} $</td>
<td></td>
</tr>
<tr>
<td>Daily</td>
<td>$10,000 \left(1 + \frac{0.08}{365} \right)^{365(5)} $</td>
<td></td>
</tr>
<tr>
<td>Hourly</td>
<td>$10,000 \left(1 + \frac{0.08}{8760} \right)^{8760(5)} $</td>
<td></td>
</tr>
</tbody>
</table>
The Continuous Compounding Formula
If a principal \(P \) is invested for \(t \) years at an annual rate \(r \) compounded continuously, then the amount \(A \), or ending balance, is given by \(A = Pe^{rt} \).

Example 3 Find the future value of $10,000 at 8\% \) compounded continuously for five years.

<table>
<thead>
<tr>
<th>Frequency ((n))</th>
<th>Formula (10000e^{(0.08)(5)} = 10000e^{0.40})</th>
<th>6-year total</th>
</tr>
</thead>
<tbody>
<tr>
<td>continuously ((n = \infty))</td>
<td>$10000e^{(0.08)(5)} = $10000e^{0.40})</td>
<td>$14918.25</td>
</tr>
</tbody>
</table>

Example 4 If a given amount of money (say $100) is invested in an account that pays compound interest, which would result in a higher rate of return? 6 percent compounded semi-annually or \(\frac{7}{8} \) \% \) compounded daily?

Find the effective rate of interest for each.

6 percent compounded semi-annually
The new balance after 1 year is
\[
\left(1 + \frac{0.06}{2} \right)^2 = 106.09
\]
The effective rate of interest is 6.09\%.

\(\frac{7}{8} \) \% \) compounded daily
The new balance after 1 year is
\[
100 \left(1 + \frac{0.05875}{365} \right)^{365} = 106.05
\]
The effective rate of interest is 6.05\%.

When interest is compounded a finite number of times per year, the effective rate of interest can be calculated using the formula \(\left(1 + \frac{r}{n} \right)^n - 1 \), where \(r \) is the stated rate or nominal rate.

6 percent compounded semi-annually
\[
\left(1 + \frac{0.06}{2} \right)^2 - 1 = 0.0609 \text{ or } 6.09\%
\]
The effective rate of interest is 6.09\%.

\(\frac{7}{8} \) \% \) compounded daily
\[
\left(1 + \frac{0.05875}{365} \right)^{365} = 0.0605 \text{ or } 6.05\%
\]
The effective rate of interest is 6.05\%.

Present Value

How much money \(P \) should be invested now at a fixed rate of interest \(r \), in order to have a balance of \(A \), \(t \) years from now?

To determine this, we can solve the formula \(A = P \left(1 + \frac{r}{n} \right)^{nt} \) for the variable \(P \).

Example 5 How much money should be deposited in an account paying 6\% annual interest compounded monthly in order to have a balance of $200,000 after 10 years?
Time Required to Double or Triple the Value of an Investment

Example 6 If $1000 is invested at an 8% annual interest rate and interest is compounded quarterly, how long will it take for the balance of the account to double? Express your answer in years and quarters of a year. Round to the nearest quarter.

\[A = P\left(1 + \frac{r}{n}\right)^{nt} \]
\[A = 2000 \]
\[P = 1000 \]
\[r = 0.08 \]
\[n = 4 \]
\[t = ? \]

\[\frac{\ln 2}{4 \ln 1.02} = \frac{(4 \ln 1.02)t}{4 \ln 1.02} \]

Example 7 Suppose that we invest $1000 in an account that compounds interest continuously. What interest rate must the account pay if it doubles the balance in the account every 5 years? Round to the nearest tenth of a percent.

\[A = Pe^{rt} \]
\[A = 2000 \]
\[P = 1000 \]
\[t = 5 \]

\[\ln 2 = 5r \]
\[\ln 2 \approx 0.13863 \text{ or } 13.9\% \]