Steps for Solving Polynomial and Rational Inequalities Algebraically

Step 1: Write the inequality so that a polynomial or rational expression \(f \) is on the left side and zero is on the right side in one of the following forms:

\[f(x) > 0 \quad f(x) \geq 0 \quad f(x) < 0 \quad f(x) \leq 0 \]

For rational expressions, be sure that the left side is written as a single quotient. Use the form \(\frac{x-3}{x+5} > 0 \) rather than \(\frac{1}{8} > 0 \).

Step 2: Determine the numbers at which the expression \(f \) on the left side equals zero and, if the expression is rational, the numbers at which the expression \(f \) on the left side is undefined.

Step 3: Use the numbers found in Step 2 to separate the real number line into intervals.

Step 4: Select a test number \(c \) in each interval and evaluate \(f \) at the test number.

(a) If the value of \(f(c) \) is positive, then \(f(x) > 0 \) for all numbers \(x \) in the interval.

(b) If the value of \(f(c) \) is negative, then \(f(x) < 0 \) for all numbers \(x \) in the interval.

If the inequality is not strict, include the solutions of \(f(x) = 0 \) in the solution set. Be careful, however. Test numbers at which \(f \) is not defined are not solutions to \(f(x) = 0 \) and should not be included in the solution set.

Example 1 Solve \(x^2 \geq x + 6 \).

Step 1 Rearrange the inequality so that 0 is on the right side.

Steps 2, 3 Solve \(x^2 - x - 6 = 0 \) to find the zeros of \(f(x) = x^2 - x - 6 \).

Draw a real number line and place these numbers on it. Do not place 0 on the number line because it is not a zero of \(x^2 - x - 6 \).

The zeros of \(x^2 - x - 6 \) separate the real number line into three intervals.

The solution set to the inequality \(x^2 - x - 6 \geq 0 \) is made up of one or more of these intervals together with the zeros themselves.

Choose a test number from each interval and determine whether each number makes the expression \(x^2 - x - 6 \) positive or negative.

Step 4 The solution set is the union of the intervals whose test numbers made the expression \(x^2 - x - 6 \) positive. Since the inequality was not strict, the zeros of \(x^2 - x - 6 \) are also included in the solution set. Express the solution set in interval notation.
Example 2 Solve $x^3 - 3x < 18 - 4x^2$.

Example 3 Solve $\frac{7}{x - 1} \geq 2$.

Example 4 Solve $\frac{3}{x - 2} + \frac{4}{x + 1} \geq 0$.

Example 5 Find the domain of the function

$$f(x) = \sqrt{36 - x^2}.$$